Implementation of the principles of seismic isolation for effective seismic protection of oil and gas facilities
Implementation of the principles of seismic isolation for effective seismic protection of oil and gas facilities

Implementation of the principles of seismic isolation for effective seismic protection of oil and gas facilities

DOI: 10.37153/2618-9283-2021-5-50-63

Authors:  

Белаш Татьяна Александровна Tatiana A. Belash
Dr. Sci. (Engineering), Professor, JSC Research Center of Construction. Moscow, Russian Federation

Dymov Evgenii Antonovich
Postgraduate at the Department of «Building structures, buildings and structures», Emperor Alexander I Petersburg State Transport University


Rubric:     Seismic safety and seismic isolation of buildings   
Key words: Seismic protection of tanks, oil tank, gas tank, seismic isolation supports
Annotation:
Today, in the world practice of earthquake-resistant construction, there is a fairly large amount of information about the destruction of reservoirs for storing oil and gas products. To protect such structures abroad, it is proposed to use special means of seismic protection, which make it possible to reduce the destruction of tank structures and preserve the fuel stored in them. However, on the territory of Russia, these methods of seismic protection have not yet become widespread. This report presents research on the application of seismic isolation of reservoirs for oil and gas products in seismically active regions.
Used Books:

1.                  Enerdata: Statistical Yearbook of World Energy 2020. URL: https://yearbook.enerdata.ru/natural-gas/world-natural-gas-production-statistics.html.

2.                  SP 14.13330.2018. Stroitelstvo v seismicheskikh raionakh: Aktualizirovannaia redaktsiia SNiP II s-7-81* [Construction in seismic areas: Updated version of SNiP II with-7-81*] . Moscow, Standartinform, 2018. 122 p.

3.                  Verevkin S.I., Korchagin V. A. Gazgoldery [Gas tanks]. Moscow: Publishing House of Literature on Construction, 1966. 239 p.

4.                  Edigarov S.G., Bobrovsky S.A. Proektirovanie i ekspluatatsiia neftebaz i zazokhranilishch [Design and operation of oil depots and storage facilities]. M., "Nedra", 1973, 180 p.

5.                  GOST 31385-2016. Rezervuary vertikalnye tsilindricheskie stalnye dlia nefti i nefteproduktov. Obshchie tekhnicheskie usloviia [Vertical cylindrical steel tanks for oil and petroleum products. General technical conditions]. Moscow, Standartinform, 2016. 98 p.

6.                  Kostyukov V., Skoda S. Raznovidnosti gazovogo topliva i ikh osnovnye kharakteristiki [Varieties of gas fuel and their main characteristics] // Sphere. Oil And Gas. 2017. No. 58. Pp. 58-66

7.                  Rötzer J. Design and Construction of LNG Storage Tanks. Berlin, Germany: Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften, 2020. 122 p.

8.                  Yang Y., Kim J., Seo H. Development of the world’s largest above-ground full containment LNG storage tank. – 23rd World Gas Conference. Amsterdam, 2006, pp. 1-14.

9.                  Saha S.K., Matsagar V.A. (2015) Reliability of Base-Isolated Liquid Storage Tanks under Horizontal Base Excitation. In: Kadry S., El Hami A. (eds) Numerical Methods for Reliability and Safety Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-07167-1_10

10.              S. Yoshida, “Earthquake Damages and Disaster Prevention of Aboveground Storage Tanks”, EPI International Journal of Engineering, vol. 1, no. 2, pp. 87-93, Nov. 2018

11.              STO-SA-03-002-2009 . Pravila proektirovaniia, izgotovleniia i montazha vertikalnykh tsilindricheskikh stalnykh rezervuarov dlia nefti i nefteproduktov [Rules for the design, manufacture and installation of vertical cylindrical steel tanks for oil and petroleum products]. Moscow: Rostekhexpertiza, 2009. 61 p.

12.              D. Whittaker. Seismic design of storage tanks, 2009 : New Zealand Society for Earthquake Engineering, 2009. 177 p.

13.              Rotter, J. M. (2006). Elephant’s foot buckling in pressurised cylindrical shells. Stahlbau, 75(9), 742–747. doi:10.1002/stab.200610079

14.              Malhotra, P. K., Wenk, T., & Wieland, M. (2000). Simple Procedure for Seismic Analysis of Liquid-Storage Tanks. Structural Engineering International, 10(3), 197–201. doi:10.2749/101686600780481509

15.              Shigapov R.R., Kovalchuk O.A. Obzor kharakternykh avarii vertikalnykh tsilindricheskikh rezervuarov v rezultate zemletriasenii. Seismostoikoe stroitelstvo. Bezopasnost sooruzhenii [Review of characteristic accidents of vertical cylindrical reservoirs as a result of earthquakes]. Earthquake engineering. Construction safety. 2018, no. 1, pp. 14-19.

16.              Manser, W. S., Touati, M., & Barros, R. C. (2017). The maximum sloshing wave height evaluation in cylindrical metallic tanks by numerical means. MATEC Web of Conferences, 95, 17005. doi:10.1051/matecconf/20179517005

17.              Korkmaz, K. A., Sari, A., & Carhoglu, A. I. (2011). Seismic risk assessment of storage tanks in Turkish industrial facilities. Journal of Loss Prevention in the Process Industries, 24(4), 314–320. doi:10.1016/j.jlp.2011.01.003

18.              Krausmann, E., & Cruz, A. M. (2013). Impact of the 11 March 2011, Great East Japan earthquake and tsunami on the chemical industry. Natural Hazards, 67(2), 811–828. doi:10.1007/s11069-013-0607-0

19.              The Atlantic. 1964: Alaska's Good Friday Earthquake URL: https://www.theatlantic.com/photo/2014/05/1964-alaskas-good-friday-earthquake/100746/

20.              Stefano Barone, Mauro Sartori. Seismic isolation of LNG storage tanks in Italy with curved surface sliders. Conference: 17th World Conference on Earthquake Engineering,17WCEE. Sendai, Japan. 2020.

21.              Saha, S., Matsagar, V. and Jain, A. (2013) Comparison of base-isolated liquid storage tank models under bi-directional earthquakes. Natural Science, 5, 27-37. doi: 10.4236/ns.2013.58A1004.

22.              Baumann, T., & Böhler, J. (2001). Seismic Design for Base-Isolated LNG-Storage-Tanks. Structural Engineering International, 11(2), 139–144. doi:10.2749/101686601780347165

23.              Alhan, C, Gazi, H, Guler, E. Influence of isolation system characteristic strength on the earthquake behavior of base-isolated liquid storage tanks. Indian Journal of Engineering and Materials Sciences. 2018. 25(4):346-352.

24.              Zhou, Y., Li, X., & Chen, Z. (2018). Seismic Responses Analysis of Base-Isolated LNG Storage Tank. Proceedings of GeoShanghai 2018 International Conference: Advances in Soil Dynamics and Foundation Engineering, 331–339. doi:10.1007/978-981-13-0131-5_36

25.              Nikomanesh, M. R., Moeini, M., & Goudarzi, M. A. (2019). An innovative isolation system for improving the seismic behaviour of liquid storage tanks. International Journal of Pressure Vessels and Piping. doi:10.1016/j.ijpvp.2019.04.012

Возврат к списку