Assessment of the resistance of monolithic reinforced concrete bearing systems to progressive collapse based on the principle of the level of permissible damage
Assessment of the resistance of monolithic reinforced concrete bearing systems to progressive collapse based on the principle of the level of permissible damage

Assessment of the resistance of monolithic reinforced concrete bearing systems to progressive collapse based on the principle of the level of permissible damage

DOI: 10.37153/2618-9283-2021-3-61-72

Authors:  

Mitrovic Bozidar
Moscow State University of Civil  Engineering, postgraduate student


Rubric:     Theoretical and experimental studies   
Key words: Load-carrying structures, stress-and-strain state, design prediction, calculation model, progressive collapse
Annotation:

The paper presents a method of using the reduction factor to ensure the stability of monolithic reinforced concrete bearing structures to progressive collapse.

Studies have established the values of the reduction factor based on the accepted value of the relative deformation corresponding to the formation of an admissible zone of "destruction" of the support section of the overlap under the action of transverse forces, as the main criterion for asessing the stress-strain state of monolithic reinforced concrete structures for the failure mode of a vertical supporting structure.

The accepted deformation criteria for a special limiting state correctly reflect the conditions for the formation of an admissible amount of damage to elements of bearing reinforced concrete systems.

The reduction factor (K1) obtained in the framework of the research performed is the most important deformation characteristic of the special limiting state of monolithic reinforced concrete bearing systems of buildings and structures for an emergency design situation associated with the failure of a local structural element.

Used Books:

1. Kilimnik L.Sh. K razrabotke deformatsionnoi teorii seismostoikosti sooruzhenii. Stroitel'naia mekhanika i raschet sooruzhenii. 1988, no.1, pp. 48-53. (In Russian)

2. Koren'kov P.A., Zhigna V.V. Analiz opasnosti progressiruiushchego obrusheniia monolitnogo zhelezobetonnogo karkasa 22-etazhnogo torgovo-ofisnogo tsentra v g. Sevastopole. Stroitel'stvo i tekhnogennaia bezopasnost'. 2012, no. 44. pp. 14-22. (In Russian)

3. Svod pravil SP 14.13330.2018. Stroitel'stvo v seismicheskikh raionakh. SNiP II-7-81*. M.: Ministerstvo stroitel'stva I zhilishchno-kommunal'nogo khoziaistva Rossiiskoi Federatsii. 2018. 117 p.

4. EN 1998-1. Eurocode 8: Design of sructures for earthquake resistance – Part 1: General rules seismic actions and riles for buildings. Brussels: CEN, 2005. 102 p.

5. Zharnitskii V.I. Razvitie teorii seismostoikosti zhelezobetonnykh konstruktsii [Tekst] / V.I. Zharnitskii, A.V. Zabegaev. Sbornikdokladov 1-i Vserossiiskoi konferentsii po problemam betona I zhelezobetona "Beton na rubezhe tret'ego tysiacheletiia', tom 2. M., 2001, pp. 655-658. (In Russian)

6. Banon H. Biggs Seismic Damage in Reinforced Concrete frame / H. Banon, M. John. Journal of Structural Deviation. 1981, Vol. 107, no. ST9, September, pp. 1713-1729.

7. Banon H. Seismic Safety of Reinforced Concrete Members and Structures / H. Banon, D. Veneziano. Earthquake Engineering and Structural Dynamics. 1982, Vol. 10, pp. 179-193.

8. Kabantsev O.V. O metodike opredeleniia koeffitsienta dopuskaemykh povrezhdenii K1 seismostoikikh konstruktsii / O.V. Kabantsev, E.S. Useinov, Sh. Sharipov. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Tomsk, 2016, no.2, pp. 117-129. (In Russian)

9. Popov N.N. Dinamicheskii raschet zhelezobetonnykh konstruktsii [Tekst] / N.N. Popov, B.S. Rastorguev. M.: SI, 1974. 207 p. (In Russian)

10. Popov N.N., Rastorguev B.S., Zabegaev A.V. Raschet konstruktsii na dinamicheskie I spetsial'nye nagruzki. M.: Vysshaia shkola, 1992, 319 p. (In Russian)

11. Kabantsev O.V. Nekotorye voprosy normirovaniia raschetov zhelezobetonnykh konstruktsii vysotnykh zdanii. Mezhregional'naia obshchestvennaia organizatsiia "Sodeistvie razvitiiu i primeneniiu prostranstvennykh konstruktsii v stroitel'stve". Tez. Dokladov nauchnoi sessii. Moskva: 2009, pp. 36-39. (In Russian)

12. Domarova E.V. Raschetno-konstruktivnye metody zashchity ot progressiruiushchego razrusheniia zhelezobetonnykh monolitnykh karkasnykh zdanii. Vestnik IrGTU. 2015, no.10 (105), pp. 123-129. (In Russian)

13. Kabantsev O.V., Mitrovich B. K vyboru kharakteristik predel'nykh sostoianii monolitnykh zhelezobetonnykh nesushchikh system dlia rezhima progressiruiushchego obrusheniia [Tekst] / 3) O.V. Kabantsev, B. Mitrovich. Tekhnologiia tekstil'noi promyshlennosti. 2018, no. 6 (378), pp. 234-241. (In Russian)

14. Mitrovic B. Obosnovanie kharakteristik osobogo predel'nogo sostoianiia monolitnykh zhelezobetonnykh nesushchikh system dlia rezhima progressiruiushchego obrusheniia [Tekst] / B. Mitrovich. VII Mezhdunarodnyi simpozium "Aktual'nye problem komp'iuternogo modelirovaniia konstruktsii I sooruzhenii (APCSCE2018), p. 140. (In Russian)

15. Kabantsev O.V., Mitrovic B. Deformation and power characteristics monolithic rein-forced concrete bearing systems in the mode of progressive collapse / O.V. Kabantsev, B. Mitrovic. MATEC Web Conf., Volume 251, 2018, p. 8. (In Russian)

16. Kabantsev O.V., Mitrovic B. Justification of the special limit state characteristics for monolithic reinforced concrete bearing systems in the progressive collapse mode / O.V. Kabantsev, B. Mitrovic. IOP Conference Series: Materials Science and Engineering, Volume 456, conference 1, p. 7.

17. Mitrovic B. Verification of the method of application of the reduction coefficient in the calculation of monolithic reinforced concrete systems to resist progressive collapse/ B. Mitrovic. Stroitel'stvo I rekonstruktsiia. 2021, no. 3(95), pp. 68-75. DOI 10.33979/2073-7416-2021-95-3-68-75.

18. Gosudarstvennyi standart GOST 27751-2014 Nadezhnost' stroitel'nykh konstruktsii i osnovanii. Osnovnye polozheniia.

Возврат к списку