Development of normalized acoustic response analysis for soil-structure contact state evaluation
Development of normalized acoustic response analysis for soil-structure contact state evaluation

Development of normalized acoustic response analysis for soil-structure contact state evaluation

DOI: 10.37153/2618-9283-2023-3-32-47

Authors:  

Aleksei A. Churkin
Cand. Sci. (Engineering), senior researcher of the laboratory of new types of pile foundations of the Pile Foundation Research Center of NIIOSP named after N.M. Gersevanov, JSC Research Center of Construction. Moscow, Russian Federation

Igor D. Smirnov

engineer of the laboratory of new types of pile foundations of the Pile Foundation Research Center of NIIOSP named after N.M. Gersevanov, JSC Research Center of Construction, Moscow; master of the department of seismometry and geoacoustics, Faculty of Geology, Lomonosov Moscow State University. Moscow, Russian Federation

 



Rubric:     Theoretical and experimental studies   
Key words: foundation slabs, nondestructive testing, technical geophysics, impulse response testing, attribute analysis, void index
Annotation:

Introduction. Impulse response testing is currently one of the most common methods of acoustic express diagnostics of the foundation slabs and other plate-like structures state, but is relatively uncommon in the Russian Federation. A modification of this technique, based on the analysis of normalized response parameters, is being actively developed by Russian specialists to assess the quality of soil-structure contact. The issue of developing of the new informative parameters and criteria for identifying of anomalies associated with contact violations is topical.

Aim. The purpose of the work is to inform specialists about the capabilities of the normalized acoustic response analysis method for localizing zones of soil-structure contact violation. It is proposed to apply the attribute "void index" and an auxiliary criterion for data analysis based on the nature of the distribution of attribute values.

Materials and methods. The features of the normalized acoustic response testing metodologia for soil-structure contact violations searching are described. The method for calculating the attribute "void index" for the data of the technique is shown. A criterion for the selection of anomalous areas is proposed, based on the data analysis of the nature of the distribution of attribute values.

Results. Verification of the "void index" attribute application for searching for zones of soil-structural contact violation is shown on the results of a survey of a tunnel liner physical model with a known position of the void. An example of the results of a survey of a slab at the base of an underground car park shows the use of a "void index" in conjunction with the normalized signal energy attribute. A method for statistical processing of the results is proposed, which supplements the traditionally used "three sigma" criterion.

Conclusions. A method of the "void index" attribute application to localize zones of soil-structure contact violation for the normalized acoustic response analysis method is shown. A method for statistical data processing is proposed, considering the nature of the distribution of response attributes.
Used Books:

1.       Kapustin V.V., Vladov M.L. Tekhnicheskaya geofizika. Metody i zadachi. Geotekhnika. 2020, vol. 12, no. 4, pp. 72–85. DOI: 10.25296/2221-5514-2020-12-4-72-85. [In Russian]

2.       Churkin A.A., Kapustin V.V., Konyuhov D.S., Vladov M.L. Poslednie izmeneniya v rossijskoj praktike normativnogo regulirovaniya «tekhnicheskoj» geofiziki. Geotekhnika. 2021, no. 2, pp. 56–70, DOI: 10.25296/2221-5514-2021-13-2-56-70. [In Russian]

3.       Opyt ispol'zovaniya geofizicheskih metodov dlya ocenki fakticheskih konstruktivnyh parametrov zhelezobetonnyh fundamentnyh plit / D.I. Blohin, A.S. Voznesenskij, I.I. Kudinov i dr. Gornyj informacionno-analiticheskij byulleten' (nauchno-tekhnicheskij zhurnal). 2011, no. 2, pp. 283–289. [In Russian]

4.       Sadowski L. Multi-Scale Evaluation of the Interphase Zone between the Overlay and Concrete Substrate: Methods and Descriptors. Applied Sciences, 2017, vol. 9, no. 7, article no. 893. DOI: 10.3390/app7090893.

5.       Xie X., Liu Y., Huang H., Du J., Zhang F., Liu L., 2007. Evaluation of grout behind the lining of shield tunnels using ground-penetrating radar in the Shanghai Metro Line, China. Journal of Geophysics and Engineering. Vol. 4, no. 3, pp. 253–261. DOI: 10.1088/1742-2132/4/3/S03.

6.       Kapustin V.V., Churkin A.A., Shirobokov M.P. Opyt primeneniya georadiolokacii dlya kontrolya kachestva fundamentnyh plit. Geotekhnika. 2021, no. 1, pp. 68–79. DOI: 10.25296/2221-5514-2021-13-1-68-79. [In Russian]

7.       Kapustin V.V., Shirobokov M.P. Primenenie georadarnyh tekhnologij pri obsledovanii podvodnyh konstrukcij gidrotekhnicheskih sooruzhenij. Geotekhnika. 2021, vol. 13, no. 3, pp. 54–65. DOI: 10.25296/2221-5514-2021-13-3-54-65. [In Russian]

8.       Cheng C.-C., Yu C.-P., Liou T., 2009. Evaluation of interfacial bond condition between concrete plate-like structure and substrate using the simulated transfer function derived by IE. NDT & E International, vol. 42, no. 8, pp. 678–689. DOI: 10.1016/j.ndteint.2009.06.001.

9.       Sajid S., Chouinard L. Impulse response test for condition assessment of concrete: A review. Construction and building materials. 2019, vol. 211, pp. 129–140, DOI: 10.1016/j.conbuildmat.2019.03.174.

10.     Tang H., Long S., Li T., 2019. Quantitative evaluation of tunnel lining voids by acoustic spectrum analysis. Construction and Building Materials, vol. 228, article no. 116762. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116762.

11.     Dodge E.C., Chapa S.V., 2015. Impulse response testing – analysis of relative test data. Proceedings of International Symposium on Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany, September, 2015.

12.     Churkin A.A., Khmelnitsky A.Yu., Kapustin V.V. Evaluation of soil-structure contact state by normalized acoustic response analysis. Soil Mechanics and Foundation Engineering. 2022, no. 5, pp. 453–458. DOI: 10.1007/s11204-022-09836-1

13.     Volodin G.V., Kapustin V.V. Analiz kolebanij fundamentnyh plit dlya ocenki kontakta s gruntami. Geotekhnika. 2021, vol. 13, no. 4, pp. 64–79. DOI: 10.25296/2221-5514-2021-13-4-64-79. [In Russian]

14.     Ottosen N.S., Ristinmaa M., Davis A.G. Theoretical Interpretation of Impulse Response Tests of Embedded Concrete Structures. J. Eng. Mech. 2004, no. 9, pp. 1062–1071, DOI: 10.1061/(ASCE)0733-9399(2004)130:9(1062).

15.     Shilin A.A., Kirilenko A.M., Znajchenko P.A. Kompleksnye obsledovaniya betonnyh i zhelezobetonnyh obdelok transportnyh tonnelej ul'trazvukovym i udarno-akusticheskim metodami. Transportnoe stroitel'stvo. 2014, no. 5, pp. 12–14. [In Russian]

16.     Voznesenskii A.S., Nabatov V.V. Identification of filler type in cavities behind tunnel linings during a subway tunnel survey using the impulse-response method. Tunnelling and Underground Space Technology. 2017, no. 70, pp. 254–261. DOI: 10.1016/J.TUST.2017.07.010.

17.     Modin I.N., Shevnin V.A. Sootvetstvie dannyh elektrorazvedki lognormal'nol'nomu zakonu raspredeleniya. Prikladnaya geofizika. Vypusk 109. Moskva: Izdatel'stvo «Nedra». 1984, pp. 75–82. [In Russian]

18.     Llojd E., Ederman U. Spravochnik po prikladnoj statistike. Tom 1. Moskva: «Finansy i statistika».1989. 511 p. [In Russian]

19.     Neradovskij L.G. Opyt izucheniya metodom VEZ geoelektricheskogo stroeniya doliny reki Leny «Tujmaada». Vestnik evrazijskoj nauki. 2021, vol. 13, no. 6. DOI: 10.15862/25ECVN621 [In Russian]

20.     Shejnin V.I., Dzagov A.M. Ispol'zovanie lognormal'nogo raspredeleniya pri obrabotke rezul'tatov ispytanij gruntov svayami. Osnovaniya, fundamenty i mekhanika gruntov. 2021, no. 3, pp. 2–5. [In Russian]

Возврат к списку